von Dr. Magdalene Ortmann | Juni 4, 2021
Statistisches Verfahren, bei dem die Verteilung eines interessierenden Kennwertes durch wiederholtes Ziehen mit Zurücklegen von b Stichproben der Größe N aus der vorliegenden Stichprobe geschätzt wird.
Die erhobenen Daten werden also im Grunde wie die Gesamtpopulation behandelt, aus der immer wieder Stichproben gezogen werden. Für jede Stichprobe wird dann der interessierende Parameter (z. B. b-Gewichte in der Regression) berechnet.
Im Rahmen der Regression würden wir auf diese Weise einen Mittelwert aus den vielen einzeln berechneten b-Gewichten ermitteln, der dann zu einer robusten Schätzung des „originalen“ b-Gewichtes zusammengezogen werden würde. Genauso würde man es innerhalb anderer Verfahren für die jeweils gewünschten Parameter ebenfalls machen.
von Dr. Magdalene Ortmann | Juni 4, 2021
Der Boxplot (auch: Whisker Diagramm oder Box-Whisker-Plot) ist die grafische Darstellung der Fünf-Punkte Zusammenfassung einer kontinuierlichen Variable (Minimum, 25%-Quantil, Median, 75%-Quantil, Maximum) und wird häufig dazu verwendet Ausreißer zu identifizieren.
Das Zentrum der Box bildet der Median, die Enden das 25%- und 75%-Quantil.
Die Whisker reichen bis zu den kleinsten und größten Werten, die noch keine Ausreißer darstellen.
Ausreißer (dargestellt durch Punkte) sind Werte, die mehr als 1.5 Interquartilsabstände (Länge der Box) vom unteren bzw. oberen Ende der Box entfernt liegen.
Extremwerte (dargestellt durch Sternchen) sind Werte, die mehr als 3 Interquartilsabstände vom unteren bzw. oberen Ende der Box entfernt liegen.
Anleitung: In SPSS erzeugt man einen Boxplot über Grafiken/ Diagrammerstellung/ Boxplot. Hier einfach die kontinuierliche Variable in die y-Achse ziehen und bestätigen.
Nach der Erstellung kann die Grafik in der Outputdatei durch klicken auf die Grafik beliebig angepasst werden. Am leichtesten geht dies, wenn man eine Vorlage über Datei/Vorlage zuweisen direkt auswählt. Hier bietet sich zum Beispiel Publikation grey an.
Expertentipp: Soll die Grafik für eine Abschlussarbeit oder eine Publikation verwendet werden, dann sollte unbedingt auf Farben verzichtet werden. Das spart Druckkosten, da Farbgrafiken extrem teuer sind.

von Dr. Magdalene Ortmann | Juni 4, 2021
Ein Chi2-Test ist allgemein ein Test mit einer Chi2-verteilten Teststatistik. In der Regel meint man damit aber den Chi2-Test, der auf Unabhängigkeit zwischen zwei nominalskalierten Variablen testet.
Der Test basiert auf einem Vergleich zwischen der empirisch beobachtbaren Häufigkeitsverteilung und der Häufigkeitsverteilung, die man erwarten würde, wenn die Variablen unabhängig voneinander wären.
Umso größer die Unterschiede zwischen der empirisch beobachtbaren und der bei Unabhängigkeit erwarteten Häufigkeitsverteilung, umso größer ist auch die Teststatistik (der Chi2-Wert), für die dann anhand der Chi2-Verteilung der zugehörige p-Wert ermittelt werden kann.
von Dr. Magdalene Ortmann | Sep. 9, 2021
Beschreibende Statistik, die einen nicht-wertenden Eindruck über die Stichprobe geben soll.
Sie berichtet für
- metrische Variablen, die normalverteilt sind, den Mittelwert und die Standardabweichung (MW ± 1 SD),
- metrischskalierte, aber nichtnormalverteilte bzw. für ordinalskalierte Variablen den Median und das 25. / 75. Perzentil (Md [25.; 75. Perzentil])
- nominale Variablen die absoluten und relativen Häufigkeiten (N (%)).
Es können bei Bedarf auch weitere Parameter berichtet werden, wie das Minimum, das Maximum, der Modus oder der Standardfehler. Diese sind aber nicht der Standard.
von Dr. Magdalene Ortmann | Sep. 21, 2023
Mit explorativem Vorgehen oder explorativer Analyse meint man in der Statistik allgemein eine Art der Datenanalyse, bei der keine konkreten, theoriegeleiteten Hypothesen oder Modelle seitens des Forschers/der Forscherin vorliegen.
Stattdessen wird nach Strukturen, Zusammenhängen oder Besonderheiten in den Daten gesucht wird, insbesondere um neue Fragestellungen oder Hypothesen zu generieren.
Klassische explorative Verfahren sind etwa die Hauptkomponentenanalyse, die Clusteranalyse oder die Explorative Faktorenanalyse. Aber auch bei den häufig anzutreffenden post-hoc-Tests im Rahmen einer ANOVA spricht man von einem explorativen Vorgehen.