Voraussetzung für die lineare Regression. Die Unabhängigkeit der Residuen wird durch den Durbin-Watson Test geprüft. Dabei sollte die Autokorrelation nahe 0, die D-W Statistik zwischen 1 und 3 (im Idealfall 2) und der p-Wert > .05 sein. Ist dies nicht gegeben, ist es wichtig sein Studiendesign nochmal genau zu prüfen: Gibt es Anhaltspunkte dafür, dass Beobachtungen nicht voneinander unabhängig sind? Das ist zum Beispiel bei Messwiederholung der Fall, also wenn du eine Person mehrfach gemessen hast, die Mehrfachmessung nun aber nicht richtig in deinem Modell berücksichtigst. In diesem Fall würde die lineare Regression falsche Ergebnisse liefern. Besser geeignet wären hierarchische Modelle, in dem die Messwiederholung korrekt adressiert wird.
Kategorien
Neueste Beiträge
- Nie wieder Ärger beim Datenimport – so legst du deinen Datensatz richtig an!
- Wie interpretiere ich eine ANOVA?
- So berechnest und berichtest du die ANOVA für Gruppenvergleiche in 9 Schritten
- Wie erstelle ich gute Grafiken in R?
- So erstellst du mühelos ein Balkendiagramm für Häufigkeiten in R – Video-Tutorial!