Das AIC ist ein Maß der Modellgüte, das eine höhere Modellkomplexität „bestraft“ (bzw. korrigiert). Diese Korrektur fällt mit wachsender Stichprobengröße geringer aus. Es ist nicht wie das adjustierte R-Quadrat im Sinne aufgeklärter Varianz interpretierbar, lässt aber ebenfalls den Vergleich zwischen verschiedenen Modellen zu. Das AIC wird deshalb (neben dem R2 oder BIC) als Kriterium für die Modellselektion verwendet. Ein geringerer Wert beschreibt einen besseren Datenfit des Modells.
Kategorien
Neueste Beiträge
- Nie wieder Ärger beim Datenimport – so legst du deinen Datensatz richtig an!
- Wie interpretiere ich eine ANOVA?
- So berechnest und berichtest du die ANOVA für Gruppenvergleiche in 9 Schritten
- Wie erstelle ich gute Grafiken in R?
- So erstellst du mühelos ein Balkendiagramm für Häufigkeiten in R – Video-Tutorial!