Das AIC ist ein Maß der Modellgüte, das eine höhere Modellkomplexität „bestraft“ (bzw. korrigiert). Diese Korrektur fällt mit wachsender Stichprobengröße geringer aus. Es ist nicht wie das adjustierte R-Quadrat im Sinne aufgeklärter Varianz interpretierbar, lässt aber ebenfalls den Vergleich zwischen verschiedenen Modellen zu. Das AIC wird deshalb (neben dem R2 oder BIC) als Kriterium für die Modellselektion verwendet. Ein geringerer Wert beschreibt einen besseren Datenfit des Modells.

Lade dir hier die Formelsammlung für deinen Bland-Altman-Plot herunter

Melde dich für meinen Newsletter an und erhalte sofort das PDF!

You have Successfully Subscribed!

10 % Rabatt auf unsereWorkshops & Kurse im Onlineshop!

Trage dich hier für Dr. Ortmanns beste Maildizin ein und erhalte regelmäßige Rabatte, Tipps und Coachinginhalte für deine empirische Promotion

You have Successfully Subscribed!

Lade dir hier die Checkliste für deinen Methodenteil herunter

Melde dich für meinen Newsletter an und erhalte sofort das PDF!

You have Successfully Subscribed!


Jetzt 10 % Rabatt auf alle

Workshops & Kurse sichern!

You have Successfully Subscribed!

Downloade dir hier das Flowchart für deine ANOVA

Melde dich für meinen Newsletter an und erhalte sofort das PDF!

You have Successfully Subscribed!