Der adjustierte vorhergesagt Wert dient der Messung des Einflusses eines spezifischen Datenpunktes auf die Modellvorhersage.

Stell dir vor, innerhalb eines Modells wird ein Wert für die Outcome-Variable des Modells vorhergesagt. Dies geschieht zweimal: Einmal mit (ursprünglicher vorhergesagter Wert) und einmal ohne den zu untersuchenden Datenpunkt (adjustierter vorhergesagter Wert).

Die skalierte Differenz aus den zwei vorhergesagten Werten der Outcomevariable nennt man DFFit. Je größer DFFit ist, desto größer ist der Einfluss des untersuchten Datenpunktes und desto instabiler, also durch Einzelfälle beeinflussbarer, ist das Modell. Je stabiler ein Modell ist, desto besser ist es.

Der adjustierte vorhergesagt Wert findet im Rahmen der linearen Regression Anwendung.

Lade dir hier die Formelsammlung für deinen Bland-Altman-Plot herunter

Melde dich für meinen Newsletter an und erhalte sofort das PDF!

You have Successfully Subscribed!

10 % Rabatt auf unsereWorkshops & Kurse im Onlineshop!

Trage dich hier für Dr. Ortmanns beste Maildizin ein und erhalte regelmäßige Rabatte, Tipps und Coachinginhalte für deine empirische Promotion

You have Successfully Subscribed!

Lade dir hier die Checkliste für deinen Methodenteil herunter

Melde dich für meinen Newsletter an und erhalte sofort das PDF!

You have Successfully Subscribed!


Jetzt 10 % Rabatt auf alle

Workshops & Kurse sichern!

You have Successfully Subscribed!

Downloade dir hier das Flowchart für deine ANOVA

Melde dich für meinen Newsletter an und erhalte sofort das PDF!

You have Successfully Subscribed!

Lade dir hier die Vorlage für den Aufbau deines Datensatzes herunter

Melde dich für meinen Newsletter an und erhalte sofort die Excel-Vorlage!

You have Successfully Subscribed!