von Magdalene Ortmann | Jun 1, 2020 | Logistische Regression, Modellgüte
-2LL ist die Log-Likelihood multipliziert mit Minus 2. Der Term -2LL wird innerhalb der logistischen Regression verwendet und bezeichnet die Devianz des Modells DM. Die Devianz ist ein Maß der Modellgüte im negativen Sinn: Eine höhere Devianz beschreibt einen schlechteren Fit des Modells an die Daten.
von Magdalene Ortmann | Jun 1, 2020 | ANCOVA
Der adjustierter Mittelwert bezeichnet innerhalb der Kovarianzanalyse den Mittelwert einer Gruppe nach Anpassung für den Effekt der Kovariaten.
von Magdalene Ortmann | Jun 1, 2020 | Lineare Regression
Der adjustierte vorhergesagt Mittelwert dient der Messung des Einflusses eines spezifischen Datenpunktes. Stell dir vor, innerhalb eines Modells wird ein Wert für die Outcome-Variable des Modells vorhergesagt. Dies geschieht zweimal: Einmal mit (ursprünglicher vorhergesagter Wert) und einmal ohne den zu untersuchenden Datenpunkt (adjustierter vorhergesagter Wert). Die Differenz aus den zwei vorhergesagten Werten der Outcomevariable nennt man DFFit. Je größer DFFit ist, desto größer ist der Einfluss des untersuchten Datenpunktes und desto instabiler, als durch Einzelfälle beeinflussbarer ist das Modell. Findet im Rahmen der linearen Regression Anwendung.
von Magdalene Ortmann | Jun 1, 2020 | Lineare Regression, Modellgüte
Das adjustierte R2 zeigt an, wie viel Varianz in der Gesamtpopulation, aus der die untersuchte Stichprobe gezogen wurde, durch das Modell erklärt wird. Je besser das berechnete Modell ist, desto kleiner ist der Unterschied zwischen R2 (Stichprobe) und adjustiertem R2 (Gesamtpopulation). Das adjustierte R2 wird deshalb (neben dem AIC oder BIC) als Kriterium für die Modellselektion verwendet.
von Magdalene Ortmann | Jun 1, 2020 | Logistische Regression, Modellgüte
Das AIC ist ein Maß der Modellgüte, das eine höhere Modellkomplexität „bestraft“ (bzw. korrigiert). Diese Korrektur fällt mit wachsender Stichprobengröße geringer aus. Es ist nicht wie das adjustierte R-Quadrat im Sinne aufgeklärter Varianz interpretierbar, lässt aber ebenfalls den Vergleich zwischen verschiedenen Modellen zu. Das AIC wird deshalb (neben dem R2 oder BIC) als Kriterium für die Modellselektion verwendet. Ein geringerer Wert beschreibt einen besseren Datenfit des Modells.